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Free energy of electric double layers around finite particles
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Abstract. The classic problem of evaluating the free energy of an electric double layer around
a planar electrode or polyion through an appropriate charging process is reconsidered, within
the Poisson–Boltzmann framework. After a brief consideration of an infinite planar electrode,
we examine finite-size effects. An application is made to swollen arrays of disc-shaped clay
platelets.

1. Introduction

Polyelectrolytes are made up of highly charged mesoscopic polyions, oppositely charged
microions and added salt, dissolved or suspended in a polar solvent, usually water. The
polyion may be a line (charged polymer chain), a surface (e.g. a clay platelet or a membrane),
or a three-dimensional object as in charge-stabilized colloidal suspensions or charged
micellar solutions. Due to the high polyion charge, the microscopic counterions are strongly
attracted while the coions (carrying a charge of the same sign as the polyions) are repelled,
thus giving rise to electric double layers characterized by a strong inhomogeneity of the
local densities of these ions in the vicinity of the polyion. The topology of the double layer
is obviously determined by that of the polyions, and by their relative configurations. In the
case of linear or rod-like polyions, we expect a sheath structure, while for charged platelets,
the double layer is expected to be flat. A thermodynamic quantity of prime importance is the
free energy of the double layer, which is a functional of the local densities of microscopic
ions, depending parametrically on the instantaneous configuration of polyions.

Although the double layers of neighbouring polyions overlap and interfere, it is
instructive to consider first the simpler problem of the free energy of an isolated polyion
(infinite-dilution limit), or of a polyion in a Wigner–Seitz cell with appropriate boundary
conditions, to mimic the effect of the neighbouring polyions which form a cage with some
average topology, of volume equal to the volume per polyion. This problem, which has
already been addressed by several authors [3, 4], is revisited in the present paper. Restriction
will be made to rigid lamellar polyions, with special emphasis on finite-size effects, and an
application to a suspension of disc-shaped clay platelets

2. Poisson–Boltzmann theory

We shall hereafter consider mesoscopic charged plateletsP immersed with their counter-
ions in a symmetric 1:1 electrolyte within Poisson–Boltzmann (PB) theory. The platelets
are modelled by infinitely thin rigid membranes of surfaceS. Without loss of generality,
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the membranes are assumed to be negatively charged; they carryZ elementary structural
charges−e and their surface charge density is moreover taken as a constant,σ = −Ze/S.
The solvent is replaced by a continuum of dielectric constantε.

Different electrostatic situations can be distinguished. If the suspension is in equilibrium
with a salt reservoir, the system must be considered as belonging to a grand canonical
ensemble. The numbers of microions (+ and−) are determined by equating the chemical
potential of the salt in the reservoir and in the solution. On the other hand, for a system with
a given salt concentration (canonical situation), the number of coionsN− is knowna priori,
from which N+ is deduced by means of the charge neutrality constraint:N+ − N− = Z.
In both cases, the thermodynamic potential to be considered is straightforwardly obtained
from the Helmholtz free energyF , the expression for which can be much simplified by
choosing an adequate real or virtual charging process, as will be shown below.

In the framework of Poisson–Boltzmann mean-field theory, the microions are treated
as an inhomogeneous ideal gas. The local density of microions is then related to the
electrostatic potentialϕ(r) by

ρ±(r) = ρ±
0 exp[∓βeϕ(r)] (1)

where β = 1/kT is the inverse temperature. Equation (1) expresses the condition of
chemical equilibrium: the electrochemical potential of the microions—i.e. the sum of the
ideal chemical potential and the electrostatic energy—is constant throughout the solution:

µ̃±(r) = µ±(r) ± eϕ(r) = kT log(33ρ±(r)) ± eϕ(r) = kT log(ρ±
0 33) (2)

where 3 is an arbitrary length. Equation (1) must be combined with the exact Poisson
equation which reads, denoting the charge density of the platelets byqP(r),

∇2ϕ(r) = −4π

ε

[
qP(r) + eρ+(r) − eρ−(r)

]
. (3)

In the following two paragraphs, some simple geometries and boundary conditions
allowing an analytic solution of equations (1) and (3) are briefly reviewed (i.e. Gouy–
Chapman theory [1] for an infinite charged plane, where the electrostatic problem reduces
to a one-dimensional one). General equivalent expressions for the free energy of the
double layers will then be obtained before considering the simplifications introduced by
the linearization of PB equations. Finite-size effects will be the subject of subsequent
sections.

3. A single plane without added electrolyte

When no salt is added, the only microions present in the solution are the counterions:
ρ− = 0. The simplest problem to be solved is for an infinite platelet occupying thez = 0
plane. The platelet charge density isqP(r) = σ δ(z) whereδ is the Dirac distribution and
the counterions occupy the two half-spacesz > 0 andz < 0. The electric field vanishes at
largez. For z 6= 0, one has to solve

∇2ϕ = d2ϕ

dz2
= −4πe

ε
ρ+

0 exp(−βeϕ). (4)

The discontinuity of the electric field forz = 0 is related to the surface chargeσ , so the
boundary conditions are

dϕ

dz

∣∣∣∣
z=0+

= −dϕ

dz

∣∣∣∣
z=0−

= −2πσ

ε
. (5)
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Two successive integrations yield [4]

ϕ(z) = 2kT

e
log(|z| + b) + ϕ0 (6a)

ρ+(z) = ρ+
0

exp(−βeϕ0)

(|z| + b)2
= 1

2π`B

1

(|z| + b)2
. (6b)

Two fundamental lengths have been introduced:`B = βe2/ε is the Bjerrum length
which characterizes the strength of electrostatic interactions (`B ' 7.1 Å in water) , and
b = e/(π`B|σ |) is the Gouy length characterizing the thickness of the electric double layer.

The Helmholtz free energy per unit area readsF = U − T S where

U = 1

2

∫ +∞

−∞
(qP + eρ+)ϕ dz (7)

is the total electrostatic energy per unit area and the entropyS reduces to its ideal part
consistent with PB theory:

S = −k

∫ +∞

−∞
ρ+ [

log(33ρ+) − 1
]

dz. (8)

Choosingρ+
0 33 = 1, and denoting byϕP the surface potential one gets

F = ϕPσ − 2kT
|σ |
e

(9)

with

ϕP = ϕ(z = 0). (10)

Alternatively the free energy can be calculated from an isothermal charging process [2],
where the surface charge of the membrane is varied from 0 to its final value:

F =
∫ σ

0
ϕP(σ ′) dσ ′. (11)

The reason for this ‘coincidence’ will be discussed below.

4. A periodic succession of parallel planes without added salt

The effects of finite polyion concentration can be analysed by considering a regular
succession of infinite parallel planes located atz = nh (n ∈ Z). Each plane carries a
uniform surface chargeσ < 0. The density profiles around a given membrane, e.g. located
at z = 0, can be obtained by restricting the solution of the PB equation to the Wigner–Seitz
(WS) slab extending fromz = −h/2 to z = h/2, with the boundary condition of vanishing
electric field for z = ±h/2. Choosing the edge of the slab as the reference potential
(ϕ(z = ±h/2) = 0), one obtains after two successive integrations [4]

ϕ(z) = kT

e
log

[
cos2

( |z| − h/2

λ

)]
< 0 (12a)

ρ+(z) = 1

2π`Bλ2

1

cos2((|z| − h/2)/λ)
(12b)

where the screening lengthλ is related to the Gouy–Chapman lengthb = e/(π`B|σ |) by

tan

(
h

2λ

)
= λ

b
. (13)
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The free energy per unit area of membrane now reads

F = ϕPσ − kT |σ |
e

[
2 − hb

2λ2

]
+ kT

|σ |
e

log(ρ+
0 33). (14)

This expression can be recovered by considering an isothermal charging process, but it does
not coincide with the integral of the surface potential

∫ σ

0 ϕP(σ ′) dσ ′. When an operator
reversibly decreases the surface charge of the membrane fromσ ′ to σ ′ + δσ ′, the resulting
variation of the free energy is related to the work done by the operator by

δF = δWop(σ ′ → σ ′ + δσ ′). (15)

The membrane can be considered as a reservoir ofgrafted cations (σ+) and anions (σ−)
with the constraintσ− + σ+ = σ . In order to decreaseσ ′, the operator has to move
|δσ ′|/e = −δσ ′/e cations per unit surface from the membrane to the solution. The
electrochemical potential of the grafted cations reduces to the electrostatic energy

µ̃+
P = e ϕP (16)

whereas in the solution the electrochemical potential is

µ̃+
sol = kT log(ρ+

0 33). (17)

The reversible work done by the operator in the operation is

δWop(σ ′ → σ ′ + δσ ′) = [
µ̃+

sol − µ̃+
P
] |δσ ′|

e
(18)

and therefore

F − F(σ = 0) =
∫ σ

0

[
ϕP(σ ′) − kT

e
log(ρ+

0 33)

]
dσ ′. (19)

Here, the prefactorρ+
0 = 1/(2π`Bλ

2) defining the electrochemical potential of the microions
in the solution (cf. equation (2)) depends onσ , which was not the case in the previous
situation. From this correct expression of the free energy, the equation of state of the
double layer can be derived. A little algebra yields

P ≡ −∂F

∂h

∣∣∣∣
σ,T

= kT

2π`Bλ2
. (20)

Mechanical equilibrium in the solution requires

∇P hydrostatic= eρ+(z) E = ε

4π
E div E (21)

and hence

P hydrostatic(z) − 1

8π
εE2(z) = constant= P. (22)

At each point in the solution, the osmotic pressureP has an ideal-gas contribution
Phydrostatic = ρ+(z) kT and an electrostatic contribution proportional to the square of the
electric field. The latter vanishes at the edge of the WS cell (z = ±h/2) where the osmotic
pressure reduces to its ideal-gas contribution:

P = kTρ+(h/2) = kT

2π`Bλ2
. (23)

SinceP > 0, the platelets tend to repel each other: the ideal-gas repulsion exceeds the
electrostatic attraction. This could no longer be true if the behaviour of the ions in the
solution was nonideal.
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5. General derivation of the free energy; finite-size effects

We henceforth consider charged platelets of finite size, e.g. mesoscopic clay particles.
The reduction of the initialN -platelet problem to a one-platelet problem is based on the
introduction of the WS cell. The difficulty lies in the choice of the boundary conditions to
be imposed for the electrostatic potential [5]. For example, if the symmetries of the polyion,
of its local environment and of the WS cell match, or if one is dealing with a crystal-like
configuration of platelets, it is possible to impose a vanishing normal component of the
electric field everywhere on the WS surface (6).

From a practical point of view, a direct evaluation of the free energy fromF = U −T S

proves inconvenient. It is however possible to express the free energy in terms of a general
charging process. The total electrostatic energy is

U ≡ 1

2

∫
V

[
qP + e(ρ+ − ρ−)

]
ϕ d3r =

∫
V

ε

8π
E2 d3v −

∮
6

ε

8π
ϕ ∇ϕ · dS. (24)

On writing 8 = βeϕ, the free energy becomes

βF = N+ log(ρ+
0 33) + N− log(ρ−

0 33) − 1

8π`B

∮
6

8 ∇8 · dS

+
∫

V

[
(ρ− − ρ+)8 − (ρ− + ρ+) + 1

8π`B

(∇8)2

]
d3v. (25)

The prefactorsρ±
0 are considered as free parameters, which will turn out to be useful for

the linear (Debye–Ḧuckel) approximation, but as long as a reference potential has not been
specified, they individually have no significance. In a general variation8 → 8 + δ8,
`B → `B + δ`B , representing the elementary step of a generic charging process, one may
write

δ(ρ+ + ρ−) = δρ+
0

ρ+
0

ρ+ + δρ−
0

ρ−
0

ρ− + (ρ− − ρ+)δ8. (26)

One of the terms appearing in the differential can be transformed into a surface integral
over 6 since

8 ∇2(δ8) + ∇8 · ∇(δ8) = div [8 ∇(δ8)] (27)

and finally,δF can be cast in the form

δ(βF ) = 1

8π`B

∮
6

[8 ∇(δ8) − δ8 ∇8] · dS + βU
δ`B

`B

+
∫

P
8 δ

(
σ

e

)
d2r + [

log(ρ+
0 33)

]
δN+ + [

log(ρ−
0 33)

]
δN− (28)

which can be interpreted in terms of various virtual or real charging processes. The surface
integral represents the work necessary to maintain the boundary conditions (decoupled into
‘constant charge’+ ‘constant potential’ work). The termUδ`B/`B is associated with a
variation of the strength of electrostatic interactions. In the situation where the electric field
has no normal component on the WS surface, a charging process where the Bjerrum length
varies yields

F(`B) − F(`B = 0) = kT

∫ `B

0
βU(`′)

d`′

`′ (29)
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because in this case,δσ = 0 andδN+ = δN− = 0. The above formula summarizes various
expressions. For example, if the charging process is performed such that at any stage, all
ions have a fractionλ of their final charge (cf. [2, 3]),δ`B/`B = δ(e2)/e2 = 2δλ/λ and

F − F(λ = 0) = 2
∫ 1

0
U(λ′)

dλ′

λ′ . (30)

Alternatively, if the integration is performed over the temperature (at constant dielectric
permittivity and charges; see [3]),

F − F(β = 0) = T

∫ T

∞
U(T ′) d

(
1

T ′

)
(31)

and the thermodynamic identity∂(βF)/∂β = U is recovered.
Finally, the last contribution toδ(βF ) can be re-expressed as∫

P
8

δσ

e
d2r + [

log(ρ+
0 33)

]
δN+ + [

log(ρ−
0 33)

]
δN−

=
∫

P
{[log(ρ+

0 33) − 8
]︸ ︷︷ ︸

β(µ̃+
sol − µ̃+

P)

δN+ + [
log(ρ−

0 33) + 8
]︸ ︷︷ ︸

β(µ̃−
sol − µ̃−

P)

δN−} d2r

S

=
∫

P

{
log

[
ρ+(r)33

]
δN+ + log

[
ρ−(r)33

]
δN−

} d2r

S
. (32)

Indeed, the reversible work done by an operator varying isothermallyN+ by δN+ andN−
by δN−, by moving cations and anions from the platelet to the solution (or vice versa), is

δWop =
∫

P

{
(µ̃+

sol − µ̃+
P)

δN+
S

+ (µ̃−
sol − µ̃−

P)
δN−
S

}
d2r. (33)

In the above operation, the charge migration is performed in such a way that the surface
charge of the platelet remain constant.

The general expression (28) accounts for all possible charging processes. Depending
on the physical situation under consideration, a given charging process may allow the free
energy to be cast in a tractable form. In the next paragraph, we shall see which further
simplifications the linearized version of PB theory brings about.

6. Free energy within linearized PB theory

The so-called Debye–Ḧuckel approximation consists in linearizing the potential dependence
of the ionic densitiesρ±. It is convenient to define the prefactorsρ±

0 such that

ρ±(r) = ρ±
0 exp

{∓βe [ ϕ(r) − ϕ? ]
}

(34)

whereϕ? is a reference potential to be specified, and the approximate densities are

ρ±(r) = ρ±
0

[
1 ∓ βe(ϕ(r) − ϕ?)

]
. (35)

The linearized PB equation now reads

∇2ϕ(r) = −4π

ε
qP(r) + κ2

D

[
ϕ(r) − γ0

]
(36)

where κ2
D = 4π`B(ρ

+
0 + ρ−

0 ) = 1/λ2
D is the squared inverse Debye length, andγ0 =

4πe(ρ+
0 − ρ−

0 )/(εκ2
D) + ϕ?. The numbersN+ andN− = N+ − Z = N+ + Sσ/e of counter-

ions and coions in the WS cell of volumeV are
N±
V

= ρ±
0

{
1 ± βe(ϕ? − ϕ)

}
(37)
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whereϕ is the mean potential in the WS cell

ϕ = 1

V

∫
V

ϕ(r). (38)

The relation between the macroscopic quantitiesN± and the Debye length is

4π`B

N+ + N−
V

= κ2
D

[
1 − β2e2(ϕ? − ϕ)2

] + 4π`B βe(ϕ? − ϕ)
Z

V
. (39)

A particularly simple choice is thus to linearize the densities aroundϕ, which implies taking
ϕ = ϕ?. Under these circumstances

ρ±
0 = N±

V
and κ2

D = 4π`B

N+ + N−
V

. (40)

The difficulty in the calculation of the free energy (apart from the contribution of the
boundary conditions) arises from the term

∫
P ϕP δσ d2r in equation (28): the potentialϕ

depends nonlinearly on the Debye length which generally varies with the surface chargeσ .
Indeed, the solution of equation (36) takes the form

ϕ(r) = γ0 + 4πσ

ε

∫
P

G(x − r, κD) d2x (41)

whereG is the Green’s function satisfying

(−∇2 + κ2
D)G(r, κD) = δ(r) (42)

with the required boundary conditions on the WS surface. It is however possible to construct
an isothermal charging process whereκD is held constant. The electroneutrality constraint
readsN+ −N− = Z. The constancy ofκD and hence ofN+ +N− is then achieved provided

δN+ = −δN− = δZ

2
(43)

at each elementary step of the charging process starting atZ = 0, N 0
+ = N 0

− = Nfinal
− +Z/2.

The integration along this path gives∫ σ

0

∫
P

ϕP d2r dσ = −Zeγ0 + σ

2

∫
P

ϕP d2r. (44)

7. Application to clay colloid suspensions

The clay particle is modelled by an infinitely thin, rigid disc of radiusr0 carrying Z

elementary charges−e assumed to be uniformly distributed over the surface. This is a
reasonable representation of the synthetic laponite clay particles [6] which have a typical
diameter of 250Å and a thickness of 10̊A. The positive counterions and negative coions
are assumed to be monovalent point ions. The disc is placed at the centre of a Wigner–
Seitz cell; the macroscopic concentrationn = N/V of clay particles determines the volume
v = 1/n of the cell. For a spherical cage, the radius is then unequivocally determined.
For a cylindrical cell of radiusR and height 2h, only the product 2πR2h = v is fixed.
The aspect ratioR/h is determined by minimizing the free energy as discussed later. A
spherical cage corresponds, physically, to the limit of low platelet concentrations where the
latter may rotate almost freely, while a cylindrical cage is better adapted to concentrated
stacked configurations.

Due to the lack of spherical symmetry of the polyion, the question of the adequate
boundary conditions to be imposed at the surface of the WS cell is a delicate one. In
the simpler case of a spherical polyion in a WS sphere, the symmetry naturally imposes



9198 E Trizac and J-P Hansen

that the electric field vanish at the surface of the sphere, on the assumption that the mean
distribution of neighbouring polyions is essentially isotropic. In the case of a cylindrical
WS cell, the symmetry of which is compatible with a circular polyion, we impose that the
normal component of the electric field vanish everywhere on the surface of the cylinder.

For a cylindrical WS cell, one naturally uses cylindrical coordinates. The charge density
of the platelet reads

qP(r) = qP(r, z) = σ δ(z) 2(r0 − r) (45)

where δ and 2 are the Dirac and Heaviside distributions respectively. The potential is
expanded in a Bessel–Dini series which is well adapted to the boundary conditions specified
below:

ϕ(r, z) =
∞∑

n=1

An(z) J0

(
yn

r

R

)
(46)

whereyn is the nth root of J1(y) = −dJ0(y)/dy = 0, J0 andJ1 are the Bessel functions
of 0th and 1st order, andR is the radius of the cylinder. If 2h is its height, the boundary
conditions which we have imposed are

∂ϕ(r, z)

∂r

∣∣∣∣
r=R

= 0

∂ϕ(r, z)

∂z

∣∣∣∣
z=±h

= 0.

With these conditions, one may assumeϕ = 0, without loss of generality (ϕ − ϕ is
independent ofϕ).

Figure 1. Determination of the ‘optimum’ cylindrical cell. The upper (dashed) and lower
(dotted) curve correspond to charging processes where either coion or counterion concentrations
are kept constant respectively. The solid line is obtained from the analytic expression (44)
(constant-κD charging process). The three curves give the same minimumh/r0 ' 1.01. The
clay concentration isn = 5× 10−5 M and the salt concentration is 10−4 M. The platelets carry
Z = 200 elementary charges,εCGS = 78 corresponding to water, andT = 300 K.

An analytical solution of equation (36) can be obtained [5]. The resulting density profiles
are sensitive to the aspect ratioh/R for a given cell volume 2πR2h. The ‘optimum’ aspect
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ratio is determined by minimizing the free energy with respect to this ratio. In any charging
process, the only aspect-ratio-dependent contribution to the free energy is∫ σ

0
dσ ′

∫
disc

ϕσ ′(r, z = 0) d2r

which can be calculated analytically using the constantκD charging process described in
section 6, or by numerical integration along simple paths. Examples are shown in figure 1:
the three curves correspond to charging processes where coion concentration, counterion
concentration or Debye screening length (analytical calculation) are kept constant. They all
give the same minimumh/r0 ' 1.01, which satisfies the physical requirementR/r0 > 1.
We may conclude that for finite clay platelets the swelling process leads to a well-defined
value of the inter-lamellar spacing 2h, under the action of electrostatic forces alone.

8. Perspectives

The expressions for the free energy given throughout this paper are valid within the
mean-field (or Poisson–Boltzmann) approximation. The derivation of explicit, analytical
expressions in the case of finite-size platelets requires moreover a linearization of PB
theory, while estimates for the nonlinear theory require some numerical work. Correlation
effects between microscopic ions, due to their hard core and Coulomb interactions, may
be accounted for by including appropriate terms in the initial free-energy functional (for a
recent application to charge-stabilized colloidal suspensions, see e.g. [7]).

Another crucial extension, which is currently being considered, is to include a more
realistic description of the solvent than is afforded by the ‘primitive’ model. This may be
achieved within the density functional formalism by modelling the solvent, e.g., by dipolar
hard spheres, as is routinely done for bulk ionic solutions (see e.g. [8]), and by including the
corresponding electrostatic and correlation terms in the free-energy functional. The latter
must now be minimized with respect to the local densities of the ions, taken to be charged
hard spheres, and of the dipolar hard-sphere solvent. Work along these lines is in progress.
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